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Abstract

Offline reinforcement learning (RL) enables policy learning from pre-collected offline
datasets, relaxing the need to interact directly with the environment. However, limited
by the quality of offline datasets, it generally fails to learn well-qualified policies in subop-
timal datasets. To address datasets with insufficient optimal demonstrations, we introduce
Goal-cOnditioned Data Augmentation (GODA), a novel goal-conditioned diffusion-based
method for augmenting samples with higher quality. Leveraging recent advancements in gen-
erative modelling, GODA incorporates a novel return-oriented goal condition with various
selection mechanisms. Specifically, we introduce a controllable scaling technique to pro-
vide enhanced return-based guidance during data sampling. GODA learns a comprehensive
distribution representation of the original offline datasets while generating new data with
selectively higher-return goals, thereby maximizing the utility of limited optimal demonstra-
tions. Furthermore, we propose a novel adaptive gated conditioning method for processing
noisy inputs and conditions, enhancing the capture of goal-oriented guidance. We conduct
experiments on the D4RL benchmark and real-world challenges, specifically traffic signal
control (TSC) tasks, to demonstrate GODA’s effectiveness in enhancing data quality and
superior performance compared to state-of-the-art data augmentation methods across vari-
ous offline RL algorithms.

1 Introduction

Reinforcement learning (Sutton & Barto, [2018) aims to learn a control policy from trial and error through
interacting with the environment. While demonstrating remarkable performance in various domains, this
approach typically requires vast amounts of training data collected from these interactions. Such data-
intensive requirements become impractical in applications where environmental interactions are costly, risky,
or time-consuming, such as robotics (Bhateja et al., [2024}; [Tang et al., 2025), autonomous driving (Li et al.,
2024; [Taghavifar et al,, 2025), and TSC (Zhai et al) [2025; Du et al., [2024). Offline RL offers a feasible
solution to these challenges by enabling policy learning directly from pre-collected historical datasets, thus
significantly reducing the need to interact directly with the environment.

Although offline RL makes policy learning less expensive, its performance is highly dependent on the quality
of the pre-collected datasets and may suffer from a lack of diversity, behavior policy bias, distributional shift,
and suboptimal demonstrations (Prudencio et al.l 2023). The performance of offline RL tends to decline
drastically when trained with suboptimal offline datasets. Previous studies have attempted to address these
issues by constraining the learned policy to align closely with the behavior policy (Lyu et al., 2022)) or by
limiting out-of-distribution action values (Kostrikov et al., 2021). Although these approaches have shown
performance improvements, they retain the inherent defects of offline datasets, remaining highly dependent
on data quality.

Several studies have addressed the limitations of offline RL using data augmentation methods to generate
more diverse samples. One approach involves learning world models to mimic environmental dynamics and
iteratively generate synthetic rollouts from a start state (Zhang et al.l |2023; |Treven et al., 2024)). While
this method significantly improves sample efficiency and data diversity, it suffers from compounding errors
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Figure 1: Illustrative examples of how GODA augments higher-return data with goal guidance. GODA
utilizes scalable RTG-based goal conditions to generate samples with higher returns (shorter overall distance).

and fails to control the quality of generated trajectories. Other research leverages generative models to
capture the distributions of collected datasets and randomly sample new transition data (Lu et al., 2024).
Although these methods demonstrate some performance improvements, they remain inefficient when dealing
with datasets containing limited optimal demonstrations. This inefficiency stems from their inability to
effectively control the quality of generated data.

We attempt to address this challenge by taking advantage of generative modelling to augment higher-quality
data with directional goals. Unlike previous studies (Lu et all 2024) that sample data unconditionally
and randomly, we introduce GODA to incorporate representative goals, guiding the samples toward higher
returns. Given the exceptional performance of diffusion models (Ho et al., [2020; Karras et al.l 2022)) in the
field of generative artificial intelligence, GODA utilizes a diffusion model as its generative framework. GODA
is trained to capture a comprehensive representation of the data distribution from the original dataset while
sampling new data conditioned on selective high-return goals. This approach maximizes the utility of the
limited well-performed trajectories in the original datasets.

Inspired by Decision Transformer (Chen et all 2021)), we define the ‘goal’ as the return-to-go (RTG), which
represents the cumulative rewards from the current step until the end, coupled with its specific timestep
in trajectories. RTG explicitly indicates the expected future rewards for a given behavior at the current
timestep for a specific trajectory. We assume that at the same timestep across different trajectories, a higher
RTG signifies a higher goal. To generate samples that exceed the quality of the original dataset, we introduce
three goal selection mechanisms and a scaling technique to control our expected goals during sampling.

We present an illustrative example of how GODA operates in Figure[l] The task is to identify the shortest
path from the starting point to the target. By setting higher RTG goals during sampling, GODA can
potentially discover a more efficient route that yields a higher return (the RTG at the first timestep is equal
to the return).

To better incorporate goal conditions, we further propose a novel adaptive gated conditioning approach. This
method utilizes a condition-adaptive gated residual connection and an adaptive gated long skip connection
to selectively capture multi-granularity information effectively with the guidance of goals. GODA is an
off-the-shelf solution that can seamlessly integrate with other offline RL optimization approaches on various
tasks to achieve superior results. We summarize our contributions:

1) We propose a goal-conditioned data augmentation method, namely GODA, for offline RL. It achieved
enhanced data diversity and quality for offline datasets with limited optimal demonstrations.

2) We introduce novel directional goals with selection mechanisms and controllable scaling to provide higher-
return guidance for the data sampling process in our employed generative models. Additionally, we propose
a novel adaptive gated conditioning approach to better capture input information based on goal guidance.

3) We show GODA’s competence through comprehensive experiments on the D4RL benchmark compared
with state-of-the-art data augmentation methods across multiple offline RL algorithms. We further evaluate
the effectiveness of GODA on a real-world application, i.e., traffic signal control, with small-size datasets
obtained from widely used controllers in real-world deployments. These evaluations verify GODA’s effec-
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tiveness in addressing various challenges, significantly enhancing the applicability of RL-based methods for
real-world scenarios.

The remaining sections are organized as follows: Some preliminaries about offline RL and diffusion models
are introduced in Section [2] followed by details about our methodology in Section[3] Section [d] describes the
experimental settings about D4RL and TSC tasks, baselines and evaluation algorithms. Next, we show the
data quality measurement for our augmented datasets in Section [5] and provide more detailed experimental
results in Section[6} Finally, we conclude our research and discuss future directions in Section[7] The Related
Work section is in Appendix [A]

2 Preliminaries

2.1 Offline Reinforcement Learning

In RL, the task environment is generally formulated as a Markov decision process (MDP) {S, A, R,P,~}
(Sutton & Barto) 2018). s € S, s’ € S, a € A, r = R(s,a), P(s'|s,a), and v € [0,1) represent state, next
state, action, reward function, state transition, and discount factor, respectively. RL aims to train an agent
to interact with the environment and learn a policy 7 from experience. The objective of RL is to maximize
the expected discounted cumulative rewards over time:

J=E, lz YR (54, at)] : (1)
t=0

where ¢ denotes the timestep in a trajectory. For offline RL, the policy is learned directly from of-
fline datasets pre-collected by other behavior policies, instead of environmental interactions. The offline
dataset typically consists of historical experience described as tuples (s,a,r,s’) and other environmental
signals. After learning a policy w(D) from dataset D, the performance is evaluated in online environment as

Erp) Doizo V'R (81, ar)]-

While offline RL eliminates reliance on interacting with the environment, it is highly restricted by the quality
of offline datasets due to the lack of feedback from the environment. Our GODA aims to enhance the diversity
and quality of the dataset by upsampling the pre-collected data to an augmented dataset D*. The objective
is to learn a policy 7(D*) that outperform m(D) learned from original dataset D, such that

Er D [Z V'R (s¢, ar)

t=0

> Er(p) lZVtR(Smat)} : (2)

t=0
2.2 Diffusion Models

Diffusion models (Sohl-Dickstein et al. 2015; [Ho et al., [2020; [Karras et al. 2022), a class of well-known
generative modeling methods, aim to learn a comprehensive representation of the data distribution pgata (x”)
with a standard deviation o4a.¢, from a given dataset. Diffusion models generally have two primary processes,
the forward process, also known as the diffusion process, and the reverse/sampling process.

The forward process is characterized by a Markov chain in which the original data distribution xV &
Pdata(x”) is progressively perturbed with a predefined i.i.d. Gaussian noise schedule 0¥ = 0 < oV~! <
-+ < 0% = opnax. Therefore, we can obtain a sequence of noised distributions p(x?; o) for each nose level o,

where the last noised distribution p(xo; Omax) can be seen as pure Guassion noise when opax = 0data-

For reverse process, Denoising Diffusion Probabilistic Model (DDPM) (Ho et al., |2020) models it as a
Markov chain that involves denoising an initial noise p (xo) =N (xo; 0, I) to the original data distribution
with learned Gaussian transitions. Elucidated Diffusion Model (EDM) (Karras et al., 2022) formulates the
forward and reverse processes as a probability-flow ordinary differential equation (ODE), where the noise
level can be increased or decreased by moving the ODE forward or backward in time:

dx = —d(t;)o(t;) Vx log p(x; o (t;))dt;, (3)
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Figure 2: Illustration of diffusion model training and data augmentation. The diffusion model is first trained
on the original dataset to learn the underlying data distribution, and is then used to generate higher-quality
samples conditioned on selected controllable goals.

where &(t;) denotes derivative over denoise time and Vy log p(x;o(¢;)) is referred to as the score function
(Song et al.l |2020), which points towards regions of higher data density. It is worth noting that we use ¢; to
denote the noise time to distinguish it from the trajectory timestep t. The ODE pushes the samples away
from the data or closer to the data through infinitesimal forward or backward steps. The corresponding step
sequence is {to,t1,...t 5}, where ty = 0 and N denotes the number of ODE solver iterations.

EDM proposes to estimate the score function using denoising score matching (Karras et al. [2022)). Specifi-
cally, a denoiser neural network Dg(x; o) is trained to approximate data x~ sampled from pgat, by minimizing
the Lo denoising loss independently for each o:

mgin EXNNPdaLa?“’VN(Ovazl) HDG (XN + n; O-) - XNH; : (4)

Subsequently, the score function can be calculated as Vylogp(x;0) = (Dg(x;0) — x)/0?. EDM employs
Heun’s 24 order ODE solver (Ascher & Petzold, [1998) to solve the reverse-time ODE by iteratively refining
x¥ toward ty = 0, i.e., sampling data with the reverse process.

3 Methodology

In this section, we introduce GODA, a goal-conditioned data augmentation method utilizing generative
modeling for augmenting higher-quality synthetic transition data. Our adopted diffusion model first learns
comprehensive data distribution from the initial offline dataset, subsequently sampling new data towards
higher return with controllable, selective goal conditions, as shown in Figure In this part, we define a
representative goal for GODA in Section [3.I] and introduce different selective mechanisms for goal conditions
in Section [3:2] To proactively control the sampling direction, a controllable goal scaling factor is introduced
in Section B3] For better integrating goal conditions as guidance within the diffusion model, we further
propose a novel adaptive gated conditioning approach (Section that introduces a condition-adaptive gate
mechanism into the long skip connection and the residual connection. Section presents the pseudocode
(Algorithm [1)) and outlines the implementation details of our method.

3.1 Return-oriented goal

Prior diffusion-based data augmentation work lacks the ability to guide the sampling process
toward a desired outcome. In our approach, we introduce a return-oriented goal as a conditioning signal for
the diffusion model, analogous to how prompts are used to guide image generation in some diffusion models
(Peebles & Xiel 2023} [Li et all 2025)). As shown in Figure (3] the denoiser neural network not only takes
as input the noised sample and noise level, as described in Equation [@ but also an extra goal condition.
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Inspired by Decision Transformer, we adopt return-to-go (RTG) (Chen et al., |2021), which represents the
cumulative rewards from the current step till the end, as an explicit goal condition

ﬁt:ZTt’o ()

For each transition sample represented as a tuple (s,a,s’,r) within a trajectory, the RTG serves as an
unbiased measure of the future rewards corresponding to the current state-action pair. In the context of
Decision Transformer, a higher RTG at a given timestep implies a more ambitious goal for the policy to
achieve, thereby guiding the behavior of the agent toward more rewarding outcomes. Since the same behavior
at different timesteps often yields varying RT'Gs across different trajectories, we combine the RTG with its
corresponding timestep in the trajectory as the condition for each specific transition sample. The timestep
signal acts as a timestamp for each goal.

3.2 Selective goal conditions

To get the training goal conditions from the original dataset, we first organize offline samples into trajectories,
compute the RT'G g; for each, and append timestep ¢ to every sample. These goals along with the transition
samples {(g:,t, ¢, ar, St+1,7¢)} are then used to train the diffusion model to capture the underlying data
distribution. For data augmentation (sampling procedure), however, we aim to generate new samples condi-
tioned on a selectively chosen batch of goals. To fully leverage well-performing samples and augment samples
with higher returns, we propose three distinct condition selection mechanisms: return-prior, RT'G-prior, and
random goal conditions.

(1) Return-prior goal condition. In this approach, we rank all trajectories based on their return values
and select the top n trajectories. During the sampling procedure of the diffusion model, the RTG and
timestep pairs (g, t) from these top n trajectories are selected as the sampling goal conditions. This method
filters high-return trajectories from the initial offline datasets and reuses them to sample more well-optimized
transitions. The following example illustrates how we select goal conditions from the top two trajectories.
g7 denotes the RTG value at timestep ¢ from trajectory 7.

Original Trajectory t=1 t=2 t=23 t=4 e Return
1 (selected) h I g3 ax A 100
2 (selected) a3 I g2 a2 95
3 (excluded) g3 a5 a5 a3 S 90
4 (excluded) gt ga a3 o . 70

(2) RTG-prior goal condition. We group RTGs by their associated timesteps and then sort them to
select the top n RTGs along with their corresponding timesteps as goal conditions. As illustrated in the
example below, for each column, the RTG values are sorted in descending order from top to bottom. This
approach selectively reuses high-RTG transitions for data augmentation, focusing on transitions that are
most likely to yield higher returns.

Re-ordered Trajectory t=1 t=2 t=23 t=4
1 (selected) h a3 g3 In
2 (selected) a1 a5 a3 a3
3 (excluded) Q? 575 éi’ .‘?31
4 (excluded) {}411 Q% §§ @Z

(3) Random goal condition. We randomly select m RTG and timestep pairs (g, t) as sampling goal
conditions for each batch of samples. This increases the diversity of the augmented data while paying less
attention to the optimal trajectories for improving performance.

3.3 Controllable goal scaling

Selective goal conditions offer high-return guidance during the sampling process, but are limited in generating
data with returns or quality beyond the initial offline datasets. To overcome this limitation, we introduce a
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Figure 3: The denoiser neural network with adaptive gated conditioning architecture. The condition-adaptive
gated long skip connection, shown in the left part, captures both low- and high-level features, assigning varying
importance weights to each. The orange arrows to the left of each Gated Residual MLP Block represent the
noise level and goal condition. The adaptive gated residual, depicted in the right part, further enhances the
model by selectively preserving input information based on the given conditions.

controllable goal scaling factor, A, which can be multiplied with the goal values to represent a higher return
expectation. This approach enables flexible adjustment of goal values to drive the sampling process toward
higher-quality data. As illustrated in Figure [I] a higher RTG goal at each timestep directs the sampling
process toward a trajectory with a greater overall return. Since RT'G values can be either positive or negative
in certain tasks, we propose multiplying positive goals by the scaling factor and dividing negative goals by

it.
goal = (i\gt’ b,
(gt/Aa t)7

ot ()
gr < 0.

It is worth noting that we use a goal scaling factor rather than an increment factor, i.e., goal = (g; + A, ).
The reason is that incrementing each RTG §; = ZtT/:t ry with a fixed value would be the same as simply
incrementing the terminal reward rp by A while leaving all other target rewards r; for ¢ # T unchanged.
However, assigning a higher RTG goal at each timestep is intended to encourage the agent to generate
trajectories that yield higher rewards throughout the trajectory, rather than only improving the terminal
reward. Therefore, a goal scaling factor can be a better choice than an increment factor.

3.4 Adaptive Gated Conditioning

To better capture goal guidance and seamlessly integrate conditions into the diffusion model, we propose
a novel adaptive gated conditioning approach, as shown in Figure [3| This structure significantly enhances
the ability to guide the diffusion and sampling processes using goal conditions. The conditional inputs
include both the noise level condition and goal condition, which are embedded separately, then element-wise
added, and fed into the neural network. The noise input is processed with several gated residual multi-layer
perception (MLP) blocks with novel adaptive gated skip connections between shallow and deep layers.

3.4.1 Condition Embedding

The noise level o for diffusion is encoded using Random Fourier Feature (Rahimi & Recht,, 2007)) embedding.
The RTG is processed with a linear transformation to get a hidden representation. The timestep of each
RTG is embedded with Sinusoidal positional embedding (Vaswani et all [2017). We concatenate the RTG
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Algorithm 1 GODA: Goal-Conditioned Data Augmentation

1: Initialize generative model Gy and D* = ()

# Diffusion Model Training

Split initial offline dataset D into trajectories according to episode terminal information

Calculate RT'Gs for each transition sample in trajectories

Add RTGs and timesteps as goals into D

Train Gy on D using Eq. [9 by conditioning on goals

# Data Augmentation (Sampling)

repeat
Extract goal conditions for sampling according to the goal selection mechanism.
Re-assign sampling goal conditions with goal scaling factor A using Eq. [6]
Sampling a batch of new transition samples B* by conditioning on scaled goals

10: D* < D*UB*

11: until |D*| = number of target samples
# Policy Training and Evaluation

12: Train policy 7 on the final dataset D* U D

13: Evaluate policy on target tasks

and timestep embeddings to form the goal condition, which is then element-wise added to the noise level
embedding and used as the conditional input.

3.4.2 Adaptive Gated Long Skip Connection

As shown in the left part of Figure |3 we adopt a long skip connection similar to U-Net (Ronneberger et al.,
2015) to connect MLP blocks at different levels. To capture different information with varying importance
weights, we propose a novel adaptive gated long skip connection structure by adding the previous information
with an adaptive gate mechanism based on the given conditions.

Tout = (1 — W) * Tgkip + w * , (7)

where x4, and = are outputs of a shallower block and the previous block, and w denotes a learnable weight
calculated by regressing the conditional input with an MLP and a sigmoid layer.

3.4.3 Gated Residual MLP Block

The right part of Figure [3| depicts the structure of each gated residual MLP block. We mainly use a
simple MLP structure to process the inputs, given the non-sequence input format. We have also tried
more complicated structures, e.g., self-attention and cross-attention mechanisms, while getting degraded
performance. We adopt the widely used adaptive layer normalization (adaLN) method (Peebles & Xie,
2023)) to learn dimension-wise scale v and shift 5 based on the conditional information. Besides, we explore
a modification of the residual connection (He et all [2016) and introduce a novel condition-adaptive gated
residual connection to further enhance the model by selectively preserving input information. It also regresses
the conditional input and gets a learnable weight v for adaptively preserving input information.

xout:(l_y)*F(x)+V*l', (8)

where F is the learned transformation.

3.5 Method Implementation

Given the strong ability of diffusion models to capture the complex data distribution and generate high-
dimensional data, we adopt EDM (Karras et al., |2022)) as our generative model for augmenting offline data.
The neural network equipped with adaptive gated conditioning, as illustrated in Figure |3] is used as the
denoiser function. It takes as input the noised sample x 4+ n, noise level o, and goal condition ¢, and make
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predictions for the original sample x. Therefore, with goal conditions ¢ and transition data x from the
original datasets, the diffusion model Gy with a learnable denoiser neural network Dy is trained by

. 2
mn Ex crpaasain~A(0,021) [ Do(x +1n;05¢) — x||; . 9)

Algorithm [T] outlines the overall process of our GODA method. We begin by training a conditional diffusion
model to approximate the data distribution of the offline dataset (Lines 2-5), using transition tuples paired
with their corresponding goal conditions as training samples. Once the diffusion model is well trained, we
use it to generate new transition samples by conditioning it on selected and scaled goals (Lines 6-11). The
resulting augmented samples are then stored in the augmentation dataset D* for subsequent policy training
(Line 12). The learned policy is finally evaluated on target tasks (Line 13).

4 Experimental Settings

In this section, we provide a comprehensive overview of the experiments conducted to evaluate the perfor-
mance of our proposed GODA method.

4.1 Tasks and Datasets
4.1.1 DA4RL Benchmark

We adopt three popular Mujoco locomotion tasks from Gym EI, i.e., HalfCheetah, Hopper, and Walker2D,
and a navigation task, i.e., Maze2D (Fu et al.,[2020), as well as more complex tasks, specifically the Pen and
Door tasks from the Adroit benchmark (Rajeswaran et al., 2017} [Fu et al.l [2020). For locomotion tasks, we
adopt four data quality levels: Random, Medium-Replay, Medium, and Medium-Expert. For Maze2D, three
datasets collected from different maze layouts are adopted, i.e., Umaze, Medium, and Large. For the Adroit
benchmark, we use two different datasets: Human and Cloned.

4.1.2 V-D4RL Benchmark

We further extend our approach to the Cheetah-Run task from V-D4RL , a high-dimensional
pixel-based offline RL benchmark, with four data quality levels: Random, Medium-Replay, Medium, and
Medium-Expert. We implement our GODA by following the same settings adopted in SynthER [Lu et al
. Specifically, the original image-based datasets are first used to pre-train a Behavior Cloning (BC)
policy network composed of a CNN encoder, a trunk network, and a final fully connected layer. The CNN
encoder and trunk network are then frozen and used to transform each observation and next observation,
represented as raw image data of size 84x84x3, into a 50-dimensional latent representation. These low-
dimensional representation data, combined with rewards and actions, are then used to train the diffusion
model and augment transition samples in the latent space. These augmented samples are subsequently used
to fine-tune only the final fully connected layer (output head), thereby avoiding the need to directly generate
high-dimensional image data.

4.1.3 Traffic Signal Control

To evaluate GODA’s applicability to real-world challenges, we further test it on TSC tasks with much fewer
training samples using the CityFlow simulator (Zhang et al., |2019). TSC aims to optimize traffic flow by
efficiently managing traffic signals to maximize overall traffic efficiency.

To evaluate our GODA, we select three real-world scenarios featuring a 12-intersection grid from Jinan (JN)
city and two scenarios with a 16-intersection grid from Hangzhou (HZ) city (Zhang & Deng} [2023)). These
scenarios represent a variety of traffic patterns and intersection structures, allowing us to cover a wide range
of traffic situations. To bridge the gap between simulation and real-world conditions, we use the widely
adopted Fixed-Time (FT) controller as one of our behavior policies for generating the initial offline datasets.

Thttps://www.gymlibrary.dev/environments/mujoco/
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Figure 4: Data quality evaluation for SynthER and GODA on Walker2D-Random-V2. Left: Dynamics
MSE and Min L2 Distance comparison. Smaller Dynamics MSE indicates better validity, and larger Min
L2 Distance indicates higher diversity. Middle: Ground-truth reward distributions from the simulator for
augmented datasets. Right: Ground-truth and augmented reward distributions for the GODA-augmented
dataset.

Additionally, we employ Advanced Max Pressure (AMP) (Zhang et al.,[2022)) and Advanced CoLight (ACL)
(Zhang et all, [2022) to create higher-quality datasets for further evaluation. We present more details in

Appendix

4.2 Baseline Data Augmentation Methods

To verify the effectiveness of our proposed GODA, we compare it with three state-of-the-art data augmen-
tation methods:

TATUP| (Zhang et al},[2023), which learns world models to generate synthetic rollouts and truncates trajec-
tories with high accumulated uncertainty.

SynthERF] (Lu et all [2024), which employs diffusion models to unconditionally augment large amounts of
new data based on the learned distribution of original datasets.

DiffStitch]] (Li et all 2024), which augments data with a diffusion model and three MLPs, and actively
connects low to high-reward trajectories with stitch techniques.

4.3 Evaluation Algorithms

To verify the quality of datasets augmented by GODA, we follow the evaluation settings adopted in previous
data augmentation studies. We train two widely-used offline RL algorithms, i.e., IQL (Kostrikov et al., [2021))
and TD3+BC (Fujimoto & Gul 2021)), on datasets and evaluate the learned policy on D4RL tasks. For TSC
tasks, we utilize BCQ (Fujimoto et all 2019)), CQL (Kumar et al., [2020), and DataLight
2023) as the evaluation algorithms. For V-D4RL tasks, the BC algorithm is adopted for evaluation.

It is important to note that for GODA, we train the evaluation algorithms using a mix of the original
datasets and the augmented datasets, whereas for the other baseline methods, only the augmented datasets
are used. This is because GODA focuses on augmenting samples from the high-reward zones, which may
lead to reduced data diversity. In contrast, the baseline methods, as reported in their respective papers (Lu
and our experiments, exhibit degraded or similar performance when using a mix of the original
and augmented datasets, as illustrated in Section

2https://github.com/pipixiaqishil /TATU
Shttps://github.com/conglu1997/SynthER,
4https://github.com/guanghelil2/DiffStitch
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Table 1: Data quality evaluation metrics for SynthER and GODA on Walker2D tasks. Smaller Dynamics
MSE, larger Min L2 Distance, and larger Average Reward indicate better quality.

Task ‘ Dynamics MSE Min L2 Distance Average Reward
SynthER GODA SynthER GODA SynthER GODA
Walker2D-Random-v2 2.7+5.7 1.94+2.9 1.9+0.6 2.4+0.6 0.1£0.6 0.6+0.5
Walker2D-Medium-Replay-v2 | 0.5£1.7 0.4+1.1  1.6£0.9 1.74+0.7 2.5+1.3 3.5+0.9
Walker2D-Medium-v2 0.3%+1.0 0.3+0.8 0.8+0.5 0.84+0.6 3.4+£1.2 3.7+0.9

5 Augmented Data Quality Measurement

Since our GODA is built upon SynthER, we compare the quality of the datasets augmented by both SynthER
and GODA to assess whether the goal conditions incorporated by GODA enhance data quality. We adopt
two metrics, i.e., Dynamics MSE and Min L2 Distance, from SynthER (Lu et al., [2024):

M

. 1 i s a2
Dynamics MSE = Vi Z ((St+177"t) - (5t+1a7"t)) ) (10)
i—1
1 M o o
Min L2 Distance = i ; |[(st, a;) — (51, a1)|]2, (11)

and introduce an Average Reward for evaluating reward distributions of augmented datasets
1M
_ Ai
Average Reward = i Zl 74, (12)
=

where M is the selected number of samples, s¢, al, si,;, ri denote the samples from augmented datasets, 8}, ;
and 7} denote the next state and reward generated by the simulator given states and actions from augmented
datasets, and s} and ay are the state and action from original datasets.

Dynamics MSE measures how well the augmentation models capture the dynamics of the environment by
learning patterns from the original datasets and generating data that aligns with those dynamics. Min
L2 Distance assesses the models’ exploration capabilities and data diversity by calculating the average L2
distance between each augmented sample and its nearest neighbor in the original dataset, reflecting how
diverse the generated data is. Average Reward compares the ground-truth reward distributions produced by
the simulator given states and actions in datasets augmented by SynthER and GODA.

The left part of Figure 4] presents a scatter plot of 10K points sampled from the augmented datasets. Results
show that datasets generated by GODA exhibit much lower Dynamics MSE and a wider range of Min L2
Distance values, indicating both better alignment with environmental dynamics and greater diversity. The
superior validity in performance may stem from the goal conditions (RTG-timestep pairs), which provide
critical information for generating samples that better match the environment’s dynamics. Meanwhile, the
increased diversity is likely due to the scaled-out-of-distribution goal conditions incorporated in the sampling
process.

The middle part demonstrates that GODA not only generates samples within a high-reward data zone but
also extends the boundary of high rewards beyond the best demonstrations, compared to SynthER. The
right part shows that the rewards generated by GODA align closely with the ground-truth values.

The evaluation results for the three metrics in Table [I] further demonstrate that GODA outperforms Syn-
thER in terms of all data quality evaluation metrics across nearly all Walker2D tasks. Notably, GODA is
particularly effective on random-level datasets with high randomness and sparse optimal demonstrations,
where traditional augmentation methods often fall short.

6 Experimental Results

After directly evaluating the data quality of the augmented datasets using various metrics, we further assess
GODA by training policies on these datasets and verifying their performance on corresponding tasks. This
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Table 2: Normalized scores of D4ARL Gym and Maze2D tasks for GODA and baseline data augmentation
methods. The results are calculated across 5 random seeds. Values in bold represent the best performance
(largest score). ‘HC’: HalfCheetah; ‘WK’: Walker2D; ‘HP’: Hopper; ‘MZ’: Maze2D.

TaskData QL TD3+BC
Original TATU SynthER DStitch GODA Original TATU SynthER DStitch GODA
Rand 15.2+1.2 17.7+£2.9 17.24+3.4 15.842.0 19.5+0.5 11.3+0.8 12.14+2.3 12.2+1.1 11.8+1.4 12.5+1.3
Med-R 43.5+0.4 44.24+0.1 46.6+£0.2 44.740.1 47.5+0.4 44.8+0.7 44.5+0.3 45.94+0.9 44.74+0.3 44.940.2

HC Med 48.3%0.1 48.2£0.1 49.6+£0.3 49.4%0.1 50.44+0.1 48.1+0.2 48.1+0.2 49.9£1.2 50.44+0.5 48.5+0.1
Med-E 94.61+0.2 94.4+£0.6 93.3£2.6 94.4%1.4 94.0£1.1 90.8£7.0 89.3£3.9 87.24+11.1 96.0+0.5 94.5+£7.7
Rand 4.1+0.8 6.31+0.5 4.240.3 4.6x1.1 14.3+7.1 0.6+0.3 6.5+4.3 2.3%£1.9 2.4%1.0 4.2+1.8

WK Med-R 82.6+£8.0 75.0£12.1 83.3£5.9 86.6£2.8 96.11+4.9 85.6+4.6 62.1£10.4 90.5+4.3 89.7+4.2 93.0+5.6
Med 84.0%5.4 76.6£10.7 84.745.5 83.2£2.2 79.1£2.4 82.7£5.5 75.84+3.5 84.8+1.4 83.4£1.7 86.2+0.7
Med-E 111.74+0.6 110.7+0.6 111.44+0.7 111.6+0.1 110.9£0.7 110.0£0.4 110.7%0.7 110.24+0.5 110.2+0.3 110.7=£0.5
Rand 7.2+0.2 8.1£2.9 7.7+0.1 6.5+0.9 8.7+2.1 8.6+0.3 18.1+£11.5 14.6+9.4 8.8+2.3 8.2+0.1

HP Med-R 84.6+13.5 79.6£7.6 103.24+0.4102.1+0.4 102.5+0.6 64.4+24.8 64.1+10.5 53.4+15.5 79.6+13.5 63.0+12.8

Med 62.8£6.0 60.3£3.6 72.0+£4.5 71.0%£4.2 74.3+2.9 60.4+4.0 58.3+4.8 63.4£4.2 60.3+4.9 74.8+3.6
Med-E 106.24+6.1  93.4+17.8 90.8+£17.9 110.942.9 96.94+12.3 101.1£10. 99.0£14.9 105.44+9.7 107.1£7.0 107.5£15.3
Average 62.1£3.5 59.5+£5.0 63.74+3.5 65.1£1.5 66.24+2.9 59.0+4.9 57.41+5.6 60.0£5.1 62.0£3.1 62.41+4.1

Umaze 37.7£2.0 33.0£4.8 41.0+0.7 38.5%6.2 59.5+2.6 29.4+14.2 37.7£10.9 37.6*14.4 38.4%7.5 46.4+8.3
MZ Med 35.5£1.0 35.1£1.3 35.1£2.6 35.5%1.5 35.84+2.6 59.5+41.9 73.8+£36.9 65.24+36.1 66.8+30.9 86.51+26.4
Large 49.6+£22.0 69.1+20.1 60.84+5.3 68.44+12.6 109£16.5 97.1£29.3 93.1£25.3 92.5+38.5 92.4436.2 104.3%+20.1
Average 40.948.3 45.7£8.2  45.64+2.9 47.51+6.8 68.11+6.6 62.0£28.2 68.2£10.6 65.1+£29.7 65.94£24.9 79.1%7.5

Table 3: Normalized scores of GODA and baseline data augmentation methods on Adroit tasks evaluated
using IQL.

Task Dataset Original TATU SynthER  DStitch GODA
Pen Human 79.1£28.5 883.9+22.6 96.8+8.6 87.4+8.6 75.6+31.4
Cloned 45.8429.9 5254279  45.3+23.4 64.0+29.6 64.8+20.6
Average 62.44+29.2 70.7£25.2 71.0£16.0 75.7+19.1 70.2+26.0
Door Human 1.6+2.1 7.0£1.6 8.3+£2.2 10.0+2.5 14.8+5.0
Cloned -0.1+£0.5 -0.1£0.3 5.9+1.8 4.440.4 16.8+6.1
Average 0.8+£1.3 3.5£1.0 7.1£2.0 7.2+1.4 15.8+5.5

section presents the overall performance comparison between our GODA and other baseline data augmen-
tation methods.

6.1 Offline Reinforcement Learning Evaluation

6.1.1 Performance on D4RL

Gym tasks. Table 2| presents the normalized score comparison between GODA and other state-of-the-art
data augmentation methods trained on the D4RL Gym and Maze2D. We adopt the results of Original and
SyntheER from the SynthER paper (Lu et al. [2024), and those of TATU and DStitch from the DStitch
(Li et all 2024) paper. We further conduct experiments for tasks not covered in the literature. As shown
in the results, GODA consistently outperforms other methods across most Gym locomotion tasks when
evaluated with both IQL and TD3+4BC, resulting in higher average scores. Notably, even for tasks using
Random datasets, GODA successfully leverages limited high-quality samples to enhance data quality, leading
to improved final performance. GODA boosts performance on Med and Med-R datasets; however, a notable
gap still remains between the performance of algorithms trained on GODA-augmented Med/Med-R datasets
and the performance of algorithms trained on the original Med-E datasets. These limitations suggest that
while GODA is effective at maximizing the utility of suboptimal data, it cannot fully synthesize expert-level
performance from non-expert data alone. Its strength lies in extracting and amplifying high-quality signals
within existing data, not inventing expert behavior from scratch.

Maze2D tasks. For Maze2D tasks where rewards are sparse, GODA demonstrates significant improvements
across all datasets, achieving average gains of 43.4% and 16.0% over the best baseline methods when evaluated
with IQL and TD3+BC, respectively. The maximum improvement reaches 57.7% when applying GODA to
the Maze2D Large dataset. This might be because Maze2D tasks involve navigation from a start to a
goal location, similar to the illustrative example in Figure [I} making the goal naturally explicit and spatially
defined. GODA can directly condition the learning process on the desired goal position, which aligns perfectly
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Table 4: Evaluation of GODA on the Cheetah-Run task from the pixel-based V-D4RL benchmark using the
BC algorithm, with sample augmentation performed in the latent space.

Eval Algorithm Aug Methods | Rand Med-R Med Med-E | Average
Original 0.0£0.0 25.0+3.6 51.6+1.4 57.5+6.3 33.5+2.8
BC SynthER 0.1£0.0 27.9+3.4 52.2+1.2 69.94+9.5 37.5£3.5

GODA 1.44+0.8 35.5+6.1 54.9+2.0 67.6+10.4 39.9+4.8

Table 5: Average travel time comparison on real-world TSC tasks. Smaller travel time indicates better traffic
efficiency.

BC cQL DataLight

Traffic Dataset|  ;oina1 Syntl’?ER GODA Original Syn?hER GODA Original Synth%R GODA
FT 269.7%4.1 267.012.7 264.1£4.4 272.0%2.1 273.4%2.5 271.7+4.5 279.8%12.9 274.1£1.6 270.7E4.1
JN1 AMP 271.543.9 264.046.1 259.740.9 261.840.3 261.7+4.3 260.6+3.4 298.1+£3.1 299.2+2.0 301.7+1.4
ACL 271.142.4 271.9+1.4 270.640.3 273.3+1.6 275.244.4 273.244.3 256.4+3.2 258.4+25 255.340.3
FT 267.2%3.6 265.5+1.2 266.645.1 269.3150.3 2753160 272.5+1.0 2030L1.7 288.0%2.2 281.0+0.3
JN2 AMP 250.7+0.7 254.74+2.6 252.143.4 251.944.0 249.4+5.3 245.5+1.0 244.4+2.3 240.02.2 240.9+4.0
ACL 253.44-0.3 265.74+1.5 262.044.5 248.140.3 248.242.1 248.042.0 241.940.3 236.4+0.3 235.140.5
FT 266.953.6 263.544.9 257.3£3.4 268.040.7 273.742.3 267.1£2.8 302.6L1.9 299.9050 299.8+1.8
JN 3 AMP 263.843.1 259.3+0.7 253.244.4 251.542.9 247.7+4.9 242.5+3.5 239.4+1.8 241.844.9 232.541.7
ACL 242.2:+4.0 245.7+0.6 243.2+1.6 242.1%1.4 244.5+4.0 2455+7.1 240.3+3.6 234.7+1.3 230.1%2.7
Average 267.0%3.2 267.1+52.3 263.9£2.7 2064.8%1.0 2657142 262.4+3.2 267.5+12.1 265.512.3 262.6E1.4
FT 324547.3 313.242.0 B310.5+0.8 317.4557 315.554.0 307.1%£2.7 290.140.6 290.840.3 287.240.3
HZ1 AMP 205.8:+4.6 302.7+1.9 301.7+4.1 300.00.3 295.1+0.3 285.4+1.0 287.3+4.3 284.9:3.8 286.1+3.2
ACL 281.7+1.1 281.3+6.5 281.141.3 288.6+3.3 286.3+2.8 278.942.1 284.9+56 282.1+1.7 278.0+3.8
FT 340.0+14.9 340.714.6 341.3+1.5 341.7%2.7 334.8%1.4 331.6+£1.9 308.010.3 308.4%3.1 309.2£3.0
HZ 2 AMP 332.540.3 324.843.0 316.94+1.9 318.040.6 321.9+3.3 321.443.7 312.3+3.6 310.4+2.2 308.4+2.2
ACL 336.741.9 320.3+0.5 327.1+2.8 347.4+3.8 343.9+2.6 336.840.3 317.624.1 314.824.1 315.443.0
Average 317.352.6 315.8%3.3 B813.612.3 310.142.1 316.4+2.1 310.8+1.8 302.053.6 300.1£3.0 299.4+E3.0

with the task’s structure. Besides, GODA can possibly reuse sub-trajectories and recombine transitions from
different paths that end near the same goal, making data augmentation more effective and less likely to violate
task constraints. These results highlights GODA’s ability to effectively capture data distributions of various
types of datasets and consistently augment high-quality samples.

Adroit tasks. Table [3| presents the normalized scores on Adroit Pena and Door tasks, evaluated using the
IQL algorithm, as TD3+4BC fails to perform on these tasks. As shown, GODA outperforms all baselines on
the Pen-Cloned dataset, although it underperforms on Pen-Human. This might be because Pen task involves
high-dimensional, dexterous manipulation, where small perturbations in action can lead to disproportionately
large changes in reward (e.g., minor deviations in gripper position can affect pen stability). GODA’s reliance
on RTG as a conditioning signal can be limiting in such scenarios. However, for both datasets in the Door
task, GODA demonstrates significant improvements over the best baseline methods. These results further
demonstrate that GODA is capable of handling more complex tasks.

6.1.2 Performance on V-D4RL

Table [4] shows the results of the BC algorithm evaluated on the pixel-based Cheetah-Run task, with data
augmentation performed in the latent space. The results indicate that GODA achieves the best performance
on three out of four dataset quality levels and obtains the highest average score. It outperforms the BC
algorithm without data augmentation by 19.1%, and the BC with SynthER-augmented samples in the latent
space by 6.4%. Notably, GODA delivers substantial improvements on the Random and Medium-Replay
datasets, highlighting its suitability for offline scenarios with limited expert demonstrations.

6.1.3 Performance on Traffic Signal Control

Table[5] presents a comparison of average travel times across different methods for TSC tasks. As shown, while
SynthER achieves modest improvements over the performance of models trained on the original datasets,
it fails to surpass the original datasets on JN tasks when using the CQL algorithm. In contrast, our
GODA consistently outperforms both the original datasets and SynthER across most tasks and all average
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Figure 6: Ablation study on top n conditions.

evaluations. These extended experiments on TSC tasks further validate that GODA is not only applicable
to diverse tasks but also capable of improving performance in real-world challenges.

6.2 Ablation Study

To validate the effectiveness of GODA’s components, we conduct experiments using different configurations.

6.2.1 Ablation on Condition Selection

We test three condition selection mechanisms as described in Section [3.2} return-prior, RTG-prior, and
random goal conditions. As shown in the left part of Figure the return-prior method demonstrates
superior performance compared to the other two approaches. Moreover, GODA with the return- and RTG-
prior conditions outperforms SynthER when tested on two offline RL algorithms. In contrast, the random-
prior method shows results comparable to SynthER. This suggests that high-goal conditions identified by the
return- and RTG-prior methods enable GODA to generate samples beyond the original data distribution.
Randomly selected goal conditions, however, fail to target high-reward regions, producing similar results to
SynthER.

Moreover, return-prior generally outperforms the RTG-prior. This may be because using a return-prior
aligns better with the distribution of the original trajectories. However, directly applying the RTG prior
can introduce inconsistencies when reordering trajectories, as illustrated in Section [3.2] Specifically, the
resulting rewards (calculated as the difference between the RTGs of the current and next timesteps) in the
re-ordered trajectories may sometimes lose important high-reward signals, since RTGs are extracted from
different original trajectories and may no longer stay in high-reward regions.
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Table 6: Ablation study on adaptive gated long skip connection and adaptive gated residual connection.
AdaLN removes both the adaptive gated long skip connection and adaptive gated residual connection but
only retains the AdaLN structure; w/o AG-LSC removes the adaptive gated long skip connection; w/o
AG-RC removes the adaptive gated residual connection; w/o Gate-LSC retains the long skip connection,
but without any gating mechanism; and w/o Gate-RC retains the residual connection, but without gating.

Task Eval Alg. | AdaLN w/o AG-LSC w/o AG-RC w/o Gate-LSC w/o Gate-RC GODA
WK2D IQL 89.1£5.7  90.2+8.2 94.2+£6.1 92.4£8.6 95.0£11.7 96.1+9.4
TD3+4+BC 91.7£5.9 92.2+4.9 92.5£7.9 91.9£6.5 92.9+9.0 93.0+5.6
Average 90.4£5.8 91.2+6.6 93.4£4.0 92.2£7.6 94.0£10.4 94.6+7.5

6.2.2 Ablation on Goal Scaling Factor

We further examine the effect of different scaling factors on D4RL tasks, testing values ranging from 0.8 to
2.0. As seen in the middle part of Figure 5| the performance improves as the scaling factor increases, but
slightly degrades when the scaling factor exceeds 1.1. Scaling factors below 1.0 shrink the selected goals,
leading to suboptimal samples. Conversely, scaling factors above 1.1 push the selected goals too far beyond
the training data distribution, resulting in diminished performance. Further ablation studies can be seen in

Appendix [C4]

6.2.3 Ablation on Adaptive Gated Conditioning

Moreover, we evaluate the impact of the adaptive gated conditioning method. We compare GODA with
two variants: one using only adalN conditioning (Peebles & Xie, [2023]), and another using in-context
conditioning, where condition embeddings are directly appended to the input embeddings. From the right
part of Figure [f] it is clear that GODA with adaptive gated conditioning achieves the best results, and the
adaLN and in-context conditioning show similar performance. Additionally, all three methods outperform
SynthER, which lacks goal conditions. This demonstrates that the inclusion of goal conditions is crucial for
guiding the sampling process toward high returns, and our adaptive gated conditioning method enhances
the model’s ability to fully utilize these conditions.

We conduct further ablation experiments on both the condition-adaptive gated long skip connection (Section
and condition-adaptive gated residual connection (Section7 and each adaptive gating component
as well. The results in Table [§] show that removing either the adaptive gated long skip connection or the
adaptive gated residual connection leads to performance degradation, with the adaptive gated long skip
connection presenting a more pronounced impact. Replacing the adaptive gated long skip connection with
a vanilla long skip connection, i.e., without any adaptive gating, also results in a significant performance
drop, though it still performs slightly better than having no long skip connection at all. This highlights the
importance of incorporating goal information into the conditioning structure. A similar trend is observed
for the adaptive gated residual connection.

6.2.4 Ablation on Top Conditions Selection

Given that the original datasets contain varying numbers of trajectories, the number of top conditions
selected for sampling may differ across datasets. We compare different selections of the top n conditions for
each D4RL dataset. Based on the results shown in Figure [6 we empirically select 50 top conditions for the
Random and Medium-Replay datasets, and 40 for the Medium datasets.

While this hyperparameter may seem less critical than A, it can still meaningfully influence performance.
For example, as shown in Figure 7, the performance difference between the best and worst top-n settings
on Walker2D Medium-Replay using IQL reaches 8.8, which is a notable gap. The top-n selection primarily
acts as a filter, ensuring that data augmentation focuses on high-return regions. However, increasing n can
introduce more diversity, allowing the diffusion model to learn from a broader range of transitions. This
represents a classic trade-off between data quality and diversity: smaller n prioritizes high-return samples,
while larger n can improve generalization through diversity.
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7 Conclusion and Discussion

This paper proposes a novel goal-conditioned data augmentation method for offline RL, namely GODA,
which integrates goal guidance into the data augmentation process. We define the easily obtainable return-
to-go signal, along with its corresponding timestep in a trajectory, as the goal condition. To achieve high-
return augmentation, we introduce several goal selection mechanisms and a scaling method. Additionally, we
propose a novel adaptive gated conditioning structure to better incorporate goal conditions into our diffusion
model. We demonstrate that data augmented by GODA shows higher quality than SynthER without goal
conditions on different evaluation metrics. Extensive experiments on the D4RL benchmark confirm that
GODA enhances the performance of classic offline RL methods when trained on GODA-augmented datasets.
Furthermore, we evaluate GODA on real-world traffic signal control tasks. The results demonstrate that
GODA is highly applicable to TSC problems, even with very small real-world training datasets, making
RL-based methods more practical for real-world applications.

We acknowledge that while GODA is effective at maximizing the utility of suboptimal data, it cannot fully
synthesize expert-level performance from non-expert data alone. Its strength lies in extracting and amplifying
high-quality signals within existing data, not inventing expert behavior from scratch. Besides, GODA can
sometimes fail to perform well on some datasets with high reward sensitivity, such as Adroit Pen-Human.
Moreover, our current method is not directly applicable to high-dimensional, pixel-based visual RL or real-
world robotics datasets, as it requires transforming image data into low-dimensional latent representations
before applying diffusion-based data augmentation. Since our approach operates in a low-dimensional feature
space, this additional transformation step can complicate the implementation and introduce dependencies
on the architecture of the policy network. In future work, we aim to develop more direct methods for
augmenting pixel-based datasets by improving the sampling efficiency of the diffusion model. We also plan
to explore the application of GODA to more complex, real-world scenarios.
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A Related Work

A.1 Offline Reinforcement Learning

Offline RL involves learning policies from pre-collected offline datasets comprising trajectory rollouts gener-
ated by behavior policies. This approach is promising because it avoids the costs and risks associated with
direct interactions with the environment. Conventional offline RL methods aim to alleviate the distributional
shift problem, i.e., a significant drop in performance due to deviations between the learned policy and the
behavior policy used for generating the offline data (Hu et al.,2023). To address this issue, various strategies
have been employed, including explicit correction (Xu et al.l |2022)), such as constraining the policy to a
restricted action space (Kumar et al., 2019), and making conservative estimates of the value function (Yu
et al.l [2021; Kumar et al., [2020), with the aim of aligning the behavior policy with the learned policy.

Some recent studies exploit the strong sequence modeling ability of Transformer models to solve offline RL
with trajectory optimization. For instance, Decision Transformer (Chen et all [2021) and its variants (Wu
et all [2024; |Gao et al., [2024) utilize a GPT model to autoregressively predict actions given the recent
subtrajectories composed of historical RTGs, states, and actions. These approaches integrate hindsight
return information, i.e., RT'G, with sequence modeling, eliminating the necessity for dynamic programming.

Diffusion models have also been adopted in offline RL, given their exceptional capability of multi-modal
distribution modeling. Diffuser (Janner et all |2022)) employs diffusion models for long-horizon planning,
effectively bypassing the compounding errors associated with classical model-based RL. Hierarchical Diffuser
(Chen et al. |2024) enhances this approach by introducing a hierarchical structure, specifically a jumpy
planning method, to improve planning effectiveness further.

A.2 Data Augmentation in Offline Reinforcement Learning

Rather than passively reusing data and concentrating on enhancing learning algorithms, data augmentation
proactively generates more diverse data to improve policy optimization. Some model-based RL methods
employ learned world models from offline datasets to simulate the environment and iteratively generate
synthetic trajectories, facilitating policy optimization (Zhang et al. 2023)). For instance, TATU (Zhang
et al., |2023) uses world models to produce synthetic trajectories and truncates those with high accumulated
uncertainty. However, model-based RL often suffers from compounding errors in the learned world models.
Some basic data augmentation functions (DAFs), i.e., translate, rotate, and reflect, are also applied to
augment trajectory segments (Pitis et al., |2020). GuDA (Corrado et al., [2024) further introduces human
guidance into these DAFs to improve data quality, while human intervention is costly and lacks scalability.
Diffusion models are also directly applied to data augmentation through the sampling process. SynthER, (Lu
et al.| |2024])) is the first work that employs diffusion models to learn the distribution of initial offline datasets
and unconditionally augment large amounts of new random data. However, it fails to control the sampling
process to steer toward high-return directions actively. DiffStitch (Li et al.l 2024) attempts to enhance the
quality of generated data by actively connecting low-reward trajectories to high-reward ones using a stitching
technique.

We propose enhancing the quality of generated data from a different perspective by introducing a controllable
directional goal into our generative modeling. This approach selectively reuses optimal trajectories to guide
the sampling process toward achieving higher returns.

B Experiment Details

B.1 Hyperparameters

We show more details about the hyperparameter settings of the GODA model.
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Figure 7: An illustrative example of how GODA utilizes higher goals to steer the sampling process toward
a higher-reward data distribution region.

Table 7: Hyperparameters for denoiser network.

Hyperparameter Value
embedding dimension | 128

MLP width 512

MLP activation SiLU

gate activation Sigmoid
learning rate 0.0003

batch size 256

learning rate schedule | cosine annealing
optimizer Adam

gradient update steps | 100K

B.1.1 Denoising Network

The denoising neural network utilizes the adaptive gated conditioning architecture, as shown in Figure ref
fig:gac. Tabledetails the associated hyperparameters. We use Random Fourier Feature embedding (Rahimi
& Rechtl 2007) and Sinusoidal positional embedding (Vaswani et al., [2017) to process the noise level and
timestep of each RTG, respectively, with an embedding dimension of 128. The width of the linear layers in
the MLP block is set to 512, with SiLU (Elfwing et al., 2018) as the activation function. The total number
of trainable parameters for the denoiser neural network is approximately 3.3 M. We train our GODA model
with 100K steps of gradient updates, with a batch size of 256 and a learning rate of 0.0003.

B.1.2 Elucidated Diffusion Model

We adopt EDM (Karras et al.,[2022)) as our diffusion model and follow the original settings from SynthER, (Lu
et al.|2024)), with the default hyperparameters shown in Table EDM employs Heun’s 2" order ODE solver
(Ascher & Petzold, [1998) to solve the reverse-time ODE, enabling data sampling through the reverse process.
The diffusion timestep is set to 128 for higher-quality results. All training and sampling are conducted on
an AMD Ryzen 7 7700X 8-Core Processor and a single NVIDIA GeForce RTX 4080 GPU. Training GODA

Table 8: Hyperparameters for the diffusion model.

Hyperparameter Value
number of diffusion steps | 128
Schurn 80
Stmin 0.05
Stmax 50
Shoise 1.003
Omin 0.002
Omax 80
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(a) Intersection (b) Phases

Figure 8: A standard signalized intersection with four 3-lane approaches. The right part shows eight different
phase settings.

for 100K steps takes approximately 14 minutes, while generating 5M samples with a sampling batch size of
250K requires about 300 seconds.

B.1.3 DA4RL Tasks

In the case of Gym tasks where dense rewards are available, we employ three distinct data configurations
from the D4RL datasets: Random, Medium-Replay, and Medium. To elaborate, Random datasets contain
transition data generated by a randomly initialized policy. Medium datasets consist of a million data points
gathered using a policy that achieves one-third of the performance of an expert approach. Medium-replay
datasets contain the stored experience in a replay buffer during the training of a policy until it reaches the
score in Medium datasets. Medium-Expert datasets consist of a 50/50 mixture of expert demonstrations
and suboptimal trajectories.

For Maze2D, a 2D agent is trained to reach a goal position utilizing minimal feedback, i.e., a single point
for success, zero otherwise. Three datasets collected from different maze layouts are adopted, i.e., Umaze,
Medium, and Large.

The Pen and Door tasks from the Adroit benchmark (Rajeswaran et al) [2017; [Fu et al., 2020) involve
manipulating a pen and opening a door using a 24-DoF simulated hand robot. For each task, we use two
different datasets: Human and Cloned. The Human dataset consists of trajectories from human demonstra-
tions, while the Cloned dataset is generated by applying an imitation policy trained from a mix of human
and expert demonstrations and combining the resulting trajectories with the demonstrations in a 50/50 split.

We augment 5M samples for each D4RL task. For the sampling process, we use the return-prior goal
condition selection method and set the goal scaling factor to 1.1 for all tasks. We use the implementation of
IQL and TD3+BC from the Clean Offline Reinforcement Learning (CORL) codebase (Tarasov et all, [2024)
for D4RL tasks.

B.1.4 TSC Tasks

As shown in Figure [8] a signalized intersection in TSC problems is composed of approaches with several
lanes in each approach. The controller manages the phase as shown in the top right part of Figure [8] which
determines the activated traffic signals for different directions, to control the orderly movement of vehicles.

We formulate the TSC problem as an MDP and define the state, action, and reward function as follows:
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Table 9: Performance comparison on Gym tasks using DMG as the evaluation algorithm. Values in bold
represent the best performance (largest normalized score).

DMG
Task Data Original  SynthER GODA
Random 973425 278419  31.5+4.3
Medium-Replay | 51.4+1.6  47.14+2.4 50.9+1.7
HalfCheetah-v2 /o gim 55.241.8  57.040.6  60.5%1.1
Medium-Expert | 41.34+2.9 44.24+11.3 46.24+10.6
Random 5.3+1.2 3.6+1.1 13.2+4.9
Medium-Replay | 90.9+44.9  91.245.1  94.044.6
Walker2D-v2 Medium 90.5+5.0  95.742.5  88.2+4.7
Medium-Expert | 114.040.8  115.340.5 112.5+0.8
Random 9.9+4.4 10.843.5 11.24+2.9
Hopper—v2 Medium-Replay | 101.54+1.5 95.443.3  99.742.8
Medium 100.441.0  102.240.9 102.2+3.6
Medium-Expert | 37.6+£33.3  39.14£26.4 36.5+30.1
Average 604451  60.8+5.0  62.216.0

State. For behavior policies (AMP and ACL), the state representation includes the current phase, traffic
movement efficiency pressure, and the number of effective running vehicles (Zhang et all 2022). For eval-
uation algorithms, BCQ and CQL use the same state representation as AMP, while Datalight adopts the
number of vehicles, along with the total velocity saturation and unsaturation degrees (Zhang & Deng] [2023)).

Action. The action is generally defined as the phase selection for the next time period.

Reward. AMP, BCQ, CQL and DataLight use pressure (Zhang et all) [2022) as the reward while ACL uses
queue length. It is worth noting that we use the opposite of these metrics as the final reward function.

We generate a total of 24K samples for each dataset using the behavior policies for each task. Addi-
tionally, we augment 20K samples for each task using our GODA model. The task horizon for each
TSC scenario is set to 3600 seconds, with a control step of 15 seconds. For the sampling process,
we employ the return-prior goal condition selection method and set the goal scaling factor to 1.2 in
TSC tasks. For evaluation methods, we employ the implementation of BCQ, CQL, and DataLight from
https://github.com/LiangZhang1996 /DataLight.

C Further Experimental Results
In this section, we show some more experimental results for our GODA model.

C.1 Further Evaluation on Gym tasks

To evaluate the generalizability of our proposed method, we further conduct experiments by evaluating
GODA with a state-of-the-art offline RL method, i.e., Doubly Mild Generalization (DMG) 2024),
on Gym tasks. DMG introduces a novel generalization strategy by selecting actions from a constrained
neighborhood of the training data, thereby maximizing Q-values while avoiding excessive extrapolation.
DMG also mitigates generalization propagation and aims to balance generalization and conservatism in
offline RL.

As can be seen in Table [J] GODA-enhanced DMG outperforms both the original DMG and the SynthER-
enhanced DMG in 7 out of 12 evaluation scenarios, and achieves the highest average normalized score overall.
It’s worth noting that we were unable to reproduce the results for HalfCheetah-Medium-Expert and Hopper-
Medium-Expert for DMG. SynthER and our GODA also fail to improve the results of DMG on these two
datasets to normal levels. We suspect this may be due to hyperparameter sensitivity in DMG rather than
issues with the datasets themselves. Overall, these results support the claim that GODA can effectively
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Algorithm 2 Online Reinforcement Learning with GODA

1: Input: Real-to-synthetic data ratio &, diffusion model update frequency
2: Initialize policy 74, generative model Gy, real replay buffer D! < (), synthetic buffer D* «+ 0
3: fort=1toT do
4: Deploy policy g4 to collect real transitions and store them in preal
if t mod k = 0 then
Update diffusion model Gy using samples from D™?! (see Line 2-5 in Algorithm
Generate synthetic samples using Gy and add them to D* (see Line 6-11 in Algorithm
end if
9: Update policy g4 using samples from both Dreal and D* with a real-to-synthetic ratio of ¢
10: end for
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Figure 9: Online evaluation with SAC on Gym tasks. GODA significantly outperforms the baselines in the
early stages of training, and continues to match or outperform baselines as training progresses.

generalize to more advanced offline RL algorithms and remains a promising data augmentation framework
for enhancing state-of-the-art methods.

C.2 Online Evaluation

While our primary focus is on data augmentation for offline RL, our framework can be natually extended to
the online RL setting, similar to the approach taken in SynthER (Lu et al., 2024).

Algorithm [2] shows the gseudocode. In this online extension, we periodically train the diffusion model using
transitions collected from ongoing environmental interactions. The learned goal-conditioned diffusion model
is then used to augment the dataset with synthetic transitions. The online policy is updated using a hybrid
buffer containing both real and synthetic transitions in a 1:1 ratio.

To evaluate this setting, we implemented our method using the Soft Actor-Critic (SAC) (Haarnoja et al.
algorithm and conducted experiments on three Gym tasks: HalfCheetah, Hopper, and Walker2D. We
train SAC with an Update-To-Data (UTD) ratio of 1 while train SAC (SynthER) and SAC (GODA) with
a UTD of 20. For each 10K new real data gathered, we enhance the dataset by augmenting 1M additional
synthetic samples.

Because the distribution and quality of the real buffer improve over time during online training, we adapted
our hyperparameters accordingly. Specifically, we applied a decaying goal scaling factor, from 1.8 (effective
in low-quality, random offline settings) to 1.1 (effective in expert-level offline settings), and an increasing
Top-n condition selection, from 50 to 120, to reflect growing confidence in higher-quality goals as training
progresses.

We compare SAC (GODA) with both vanilla SAC and SAC (SynthER), and present online learning curves on
Figure [0]showing evaluation returns over 100K interaction steps. As shown, GODA significantly outperforms
the baselines in the early stages of training, where real transitions tend to be suboptimal. In the later stages,
as the quality and quantity of real data improve, GODA continues to match or slightly outperform SAC
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(SynthER), with the performance gap gradually narrowing. These results demonstrate that GODA is not
only effective in offline settings, but also a promising approach for enhancing online RL through adaptive,
goal-conditioned data augmentation.

Table 10: GODA'’s sensitivity to dataset complexity. We assess the complexity of offline datasets with several
Lipschitz constant metrics and use their 95th percentile values to quantify reward sensitivity. Pen-Human
dataset exhibits the highest sensitivity score, making it particularly challenging for GODA to accurately
capture the underlying data distribution and effectively extrapolate to higher-reward regions. Bold values
indicate the highest sensitivity.

Dataset ‘ LocalLip95 GlobalLip95 GlobalMax  RewardStd TrajLip95 ‘ GODASensitivity
Door-Cloned 3.361 0.016 5.9 4.0313 7.447 10.16
Door-Human 3.016 1.798 4.8 5.6160 4.757 13.45
Pen-Cloned 29.728 15.896 796.5 28.3944 325.811 106.03
Pen-Human 20.626 9.450 1474.1 29.0234 407.446 109.88

C.3 Failure Case Analysis of GODA

We observe that GODA fails to perform well on some scenarios, such as the Adroit Pen-Human dataset, as
shown in Table[3] Therefore, we develop a comprehensive reward sensitivity measurement to examine which
offline RL dataset characteristics make GODA effective or problematic. Our method quantifies reward
landscape sensitivity using multiple Lipschitz constant metrics across four D4RL Adroit datasets. Local
Lipschitz constants are computed using k-nearest neighbors and weighted least squares to estimate how
rapidly rewards change with small state-action perturbations at each data point. Global Lipschitz analysis
calculate pairwise ratios of reward differences to distances across all neighbor pairs to capture worst-case
sensitivity spikes throughout the dataset. Trajectory-level analysis examine within-trajectory sensitivity
by computing maximum Lipschitz ratios between trajectory steps. These metrics were combined into a
composite GODA Sensitivity weighted by local sensitivity (40%), global sensitivity (30%), reward variability
(20%), and trajectory sensitivity (10%), with data normalization and efficient subsampling for computational
tractability.

_ ror
I - sup |r(s,a) r(/s ,/a )| (13)
(s,a)2(s",a) |[(85a) — (8',a)|]2

As can be seen in Table [I0] the analysis revealed that task complexity plays an important role on GODA’s
success. Door manipulation tasks achieved excellent GODA Sensitivity with low local Lipschitz constants,
stable global behavior, and manageable trajectory sensitivity, making them highly preferable for GODA.
Conversely, pen manipulation tasks exhibited catastrophic sensitivity with GODA Sensitivity exceeding 100,
extreme local Lipschitz values, global sensitivity spikes reaching 800-1500, and volatile trajectory patterns,
making them fundamentally challenging for GODA. The critical insight is that the difference between Human
and Cloned datasets are minimal within the same task type, but task-intrinsic reward sensitivity creates a
significant gap. GODA’s failure on Pen-Human may also stem from the fact that the original dataset contains
only 25 human demonstration trajectories, which lack sufficient diversity for GODA to effectively learn the
underlying data distribution and extrapolate to out-of-distribution high-reward regions.

C.4 Ablation on Scaling Factor on Different Datasets

To evaluate the practical effectiveness of goal scaling, we conducted additional ablation studies on the
Walker2D-Random, Medium, and Medium-Expert datasets.

Figure [I0] shows that goal scaling does have a tangible impact: On the Random dataset, performance
improved significantly with scaling factors of 1.8 for IQL and 1.4 for TD3+BC. For instance, the score gap
between A =1.8 and A =1.0 in IQL reached 14.6. On Medium and Medium-Replay, a scaling factor of 1.1
consistently yielded the best results for IQL, with gains up to 4.2 compared to A =1.0. In contrast, for the
Medium-Expert dataset, the difference between A =1.0 and A =1.1 was marginal. This is likely because
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Figure 10: Ablation on scaling factor on different datasets. Goal scaling is particularly beneficial in lower-
quality datasets while still necessary for higher-quality datasets.

datasets with more expert demonstrations have less room for improvement, and higher scaling can push
goals outside the feasible return range.

These results suggest that goal scaling is particularly beneficial in low-quality datasets, where it enables
exploration of high-return regions beyond what the original data distribution offers. While A =1.1 performs
robustly across all quality levels and is used as our default, further gains can be achieved through task-specific
hyperparameter tuning.

C.5 Ablation on Mixed Datasets

Since GODA primarily augments samples from high-reward regions of the data distribution, which might
result in a lack of diversity, we use a mix of both the original and augmented datasets for training. In this
section, we compare the performance of our default setting (mixed datasets) with the use of only augmented
datasets. As shown in Figures [[1} removing the original datasets leads to slight performance degradation
across most tasks. Therefore, combining our augmented datasets with the original datasets helps increase
the diversity and extend the reward boundary.

We further present the results for baseline data augmentation methods when combining original datasets
with augmented datasets, as shown in Table For Gym tasks, TATU and SynthER exhibit degraded
performance when the original datasets are included during training, while their performance remains com-
parable on Maze2D tasks. In contrast, DStitch demonstrates the opposite trend, performing comparably on
Gym tasks but worse on Maze2D tasks when using the mixed datasets. Our GODA shows reduced scores
when the original datasets are removed; however, its final results remain superior to other baselines. GODA
only delivers slightly worse performance than DStitch on Gym tasks when evaluated with TD3+BC, but
still outperforms TATU and SynthER across all tasks.
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Figure 11: Ablation on mixed datasets for IQL evaluation.
Table 11: Ablation study on mixed datasets for baseline methods.
IQL TD3+BC
Task Dataset TATU  SynthER DStitch GODA TATU SynthER DStitch GODA
Gom A w/o Original Data | 46.2%4.3 52.142.4 51.5%1.5 52.5£2.9 43.354.2 463147 47.9%3.3 47.0£4.6
ym Ave. w/ Original Data 46.04£3.5 51.244.4 52.141.6 54.742.2 41.847.9 46.244.5 46.844.6 48.4+3.9
Mopo2D Avg. W/0 Original Data | 45782 456+2.0 A47.5£6.8 66.7%£9.8 68.2£10.6 65.1520.7 65.0424.0 74.5£11.2
aze V& W/ Original Data 47.146.8 44.849.2 46.048.4 68.146.6 68.0£10.9 65.5+37.6 65.14£23.7 79.1+7.5
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Figure 12: Performance comparison on JN1 task with difference sizes of original real-world training datasets.
The parts exceeding the maximum travel time are not displayed.
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C.6 Ablation on Size of Original Dataset

Our experiments on TSC tasks utilize only 24K samples, compared to 1-2M samples for D4RL tasks. The
superior performance across both task types demonstrates that GODA not only excels in tasks with large
training datasets but also addresses real-world challenges effectively with much smaller datasets. Considering
the even greater limitations of original datasets in real-world T'SC scenarios, we further evaluate GODA on
TSC datasets with reduced sizes, ranging from 24K to 2.4K samples.

Figure illustrates the performance of different evaluation algorithms trained separately on the original
datasets and on the mixture of original and augmented datasets. Notably, we only reduce the size of the
original datasets used for directly training the evaluation algorithms or for training GODA, while maintaining
the same number of augmented samples (20K) across all cases. Specifically, for the "Original" method, the
evaluation algorithms are trained solely on the reduced original datasets. For GODA, the GODA model
is first trained on the reduced original datasets, and then 20K augmented samples are generated. The
evaluation algorithms are subsequently trained on the mixed datasets.

The results indicate that when the original training datasets contain fewer than 9.6K samples, all three eval-
uation algorithms trained directly on the reduced original datasets fail to learn effective policies, though their
performance improves as the dataset size increases. In contrast, GODA effectively augments high-quality
data, enabling the training of qualified evaluation policies for most sizes of original datasets. Remarkably,
GODA achieves this even with only 2.4K samples in the original datasets, failing in just one case each for
BCQ and CQL, while consistently demonstrating strong performance otherwise.
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